
rv you’re dumb: Identifying Discarded Work in Wiki Article
History

Michael D. Ekstrand
University of Minnesota

ekstrand@cs.umn.edu

John T. Riedl
University of Minnesota
riedl@cs.umn.edu

ABSTRACT
Wiki systems typically display article history as a linear se-
quence of revisions in chronological order. This represen-
tation hides deeper relationships among the revisions, such
as which earlier revision provided most of the content for
a later revision, or when a revision effectively reverses the
changes made by a prior revision. These relationships are
valuable in understanding what happened between editors in
conflict over article content. We present methods for detect-
ing when a revision discards the work of one or more other
revisions, a means of visualizing these relationships in-line
with existing history views, and a computational method
for detecting discarded work. We show through a series of
examples that these tools can aid mediators of wiki content
disputes by making salient the structure of the ongoing con-
flict. Further, the computational tools provide a means of
determining whether or not a revision has been accepted by
the community of editors surrounding the article.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: GUI; H.5.3 [Group and Orga-
nization Interfaces]: Collaborative computing, web-based
interaction

Keywords
wiki, visualization, article history, Wikipedia

1. INTRODUCTION
Wikis facilitate the collaborative development of web con-

tent by allowing open editing of the content. Wiki imple-
mentations typically maintain a history of all edits and make
this history available to readers of the site. In the case of
many wiki engines, including Mediawiki, a widely used wiki
engine that powers Wikipedia, this history is displayed as
a list of revisions in reverse chronological order with dates,
editors, and edit summaries (see Figure 1).

c© ACM 2009. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in WikiSym 2009.
WikiSym ’09, October 25-27, 2009, Orlando, Florida, U.S.A.
Copyright 2009 ACM 978-1-60558-730-1/09/10 ...$10.00.

Figure 1: The Wikipedia article history view.

History is used in a variety of ways in wiki communities.
Wikipedia, with its large and diverse editing community, is
subject to a substantial amount of conflict about how arti-
cles should be written. Wikipedia editors use history views
to understand how an article has developed and how this
conflict has played out in the article’s history. In extreme
cases, mediation and arbitration committees investigate dis-
putes or behavior problems; the history of articles and their
associated talk pages provide evidence regarding what has
happened and enable the respective committees or other par-
ties to make informed decisions.

While the history of an article is a linear sequence of re-
visions (most wiki software does not facilitate forking and
merging of branches in article development), this history
does contain latent structure. As editors add, remove, and
re-add words, reverse entire edits, and generally revise and
restructure the article, new revisions are usually related to
prior revisions in some way. Of particular interest to our
work is when one change has the effect of reversing the work
done by a prior change, having the net impact of discard-
ing work done by the reversed change (and thus rejecting
that change as a part of the article and its development).
There are a variety of circumstances in which this can hap-
pen: vandalistic edits which deface the article in some way
are typically removed quite quickly, editors can remove each
others’ work in the middle of disputes over article content,
and good-faith edits perceived to be of low quality are often
reversed to maintain article quality.

Detecting whether the work contributed by a revision was
accepted or rejected by the community surrounding that ar-
ticle is useful for at least two reasons. First, if this infor-

mation can be presented clearly, it has the potential to aid
administrators, mediators, and others in determining how
the flow of editing has played out in an article’s history and
how editors have been relating to each others’ work in a dis-
pute. Second, being able to detect whether a revision was
accepted can aid in analysis of past history by determining
if a particular version of the article was considered by the
editors to be representative of what form the article should
ultimately take.

The remainder of our paper is structured as follows: af-
ter reviewing prior work on history relationship extraction
and visualization, we present our initial method computing
a tree from an article’s history. We next present our visual-
ization and use it to explore how the structuring algorithm
behaves when applied to real-world wiki data (a selection
of Wikipedia articles). We then describe and evaluate more
sophisticated means of building history trees. Finally, we de-
scribe an approach to using history trees to computationally
detect discarded work in a well-defined manner.

2. RELATED WORK
Sabel used a metric based on edit distance to structure

used the revisions of an article into a history tree such that
each revision is a child of the prior revision to which it is
the most similar [12]. Aside from this paper and another
by Alshattnawi et al. [2], we are not aware of much other
work on formally building nonlinear structures of wiki article
histories.

Viégas et al. developed a visualization of article history,
dubbed history flow, which shows how content is added,
modified, and relocated by various authors over time [14].
Their display exposes various patterns and shows clearly
how particular revisions build on prior work in the article.
It also exposes the underlying textual changes that are used
by Sabel to structure history.

Kittur et al. further explored the relationships embed-
ded in the article history by analyzing how editors related
to each others’ work [7]. They considered reverts, where
one or more edits are undone by completely restoring the
article to a prior state. By examining what who reverted
who’s work they were able to create maps depicting various
factions in the editing community involved with the article.
Brandes and Lerner [4] performed a similar analysis look-
ing at what editors revised other editors’ work, based on
the order in which editors changed the page. Biuk-Aghai [3]
presented a visualization of co-authorship relationships be-
tween articles, aiming to depict the relationships between
articles based on the degree of co-authorship. Unlike Viégas
and Sabel’s systems, which consider individual events in an
article’s history, these analyses are all summaries aggregated
over all the events in a time window.

All of these visualizations, however, are external visualiza-
tions; they are viewed in a separate program outside the wiki
and have not been integrated into existing wiki interfaces. It
seems likely that visualizations which can be implemented
as extensions of existing interfaces will be better able to be
deployed in live settings and provide value to wiki commu-
nities; to this end Suh et al. built a “dashboard” which
augmented the Wikipedia interface with information about
the authors who have contributed and recent activity level
of the article [13]. Followup work [6, 10] found that such in-
tegrated displays effectively strengthen user perceptions of
an article’s reliability. As with the user relationship analy-

1

2

3 5

4 6

Figure 2: Tree built from revisions in “Chocolate”.

sis mentioned previously, however, this is also an aggregate
summary display. There has also been work on computing
trustworthiness of articles [15] and reputation of users [1],
with suggestions and later implementations of visualization
strategies for this data.

The visualization aspect of our work draws from the tech-
niques used by distributed version control system history
tools such as gitk [8] to create an event-based visualization
which can be integrated with existing wiki interfaces.

3. BUILDING HISTORY TREES
In order to display and analyze revision relationships, we

first structure the history of an article into a tree (called an
article history tree). Using the first revision of the article
as the root node, we add the rest of the revisions such that
each revision is a child of the previous revision with one
exception: if a revision is identical to some prior revision,
we make it a child of that revision. If multiple prior revisions
have the same text, the most recent one is used. This yields
a deep binary tree with reverted-to revisions being the only
nodes with two children.

Figure 2 shows an example of an article history tree, taken
from a portion of the history of the article “Chocolate”1.
After revision 1, three edits were made yielding revisions
2, 3, and 4. Revision 5 is a revert back to revision 2, and
editing proceeds from that state to make revision 6.

As Kittur et al. did in [7], we detect reverts by computing
the MD5 checksum of the UTF-8 encoding of each revision’s
text and comparing these checksums. Reducing text to a
checksum enables prior history to be searched quickly with
low space requirements as only 20-byte strings need to be
stored and compared, and it is unlikely that two different
revisions of the same article will have the same MD5 hash.

The tree can be built efficiently by processing revisions in
chronological order and maintaining a hash table keyed with
the checksums of the revisions that have been seen. If a wiki
system stores revision checksums in its database tables, it
can build the revision tree without needing to retrieve the
full revision text.

4. VISUALIZING HISTORY TREES
In order for wiki editors to make use of structured history,

it is necessary to display the relationships encoded in the tree
in some manner. We have developed a history tree viewer to
accomplish this, aiming to meet the following design goals:

1http://en.wikipedia.org/wiki/Chocolate

1. Make it apparent which revisions were accepted as a
basis for future development of the article and which
were rejected.

2. Clearly show when a revision restores an article identi-
cally to a prior state. This is the same as requirement 1
for revert-based history trees, but treating it separately
enables the design to accommodate more general trees
where the deep binary tree property no longer holds.

3. Indicate when edits were made by the same editor.

As a further goal, our visualization must integrate with an
existing interface for viewing article history. This promotes
ease of deployment, lowers barriers to adoption, and posi-
tions the tool to be able to directly improve social translu-
cency.
gitk [8], a program for reviewing commit history in the

git distributed version control system, inspired the design of
the history tree viewer. It represents revisions with small cir-
cles, connecting each revision to its parent revision(s) with
colored lines. In this way edits, forks, and merges are all
apparent. History tree views have somewhat different re-
quirements, as they do not need to display merges and there
are many terminal branches, but the dots and lines along-
side a linear log display is retained as the foundation of our
visualization.

4.1 Layout
Figure 3 shows our interface embedded in a Wikipedia

history view. Our visualization is specifically designed to
not only be integrated into existing interfaces but to directly
augment the traditional linear history view.

On the left side of the revision list we show the relation-
ships graphically. Each revision is represented by a circle
or triangle in that revision’s row in the history. A normal
edit is drawn as a circle with an arrow going to it from its
parent revision. A revert is drawn as a downward-facing tri-
angle connected to the revision it reverts to with a heavy
line. This directly fulfills the second design goal; the revert
lines also bypass rejected revisions, meeting the first goal.

The revision symbols are laid out in columns such that
the most recent revision in the article’s history will appear
in the far left column. If a revision has more than one child,
the additional children are placed in columns to the right.

4.2 Color
In order to satisfy our third design goal, showing when

two edits were made by the same editor, we use color to
distinguish edits made by different editors. This also enables
the viewer to see which editors were involved in a particular
set of revisions. There are two methods of mapping editors
to colors that we considered.

The first is to construct an editor adjacency graph from
the revisions, with editors as vertices and an edge between
two editors whose revisions appear consecutively in the lin-
ear history or whose edits are connected in the history tree.
This graph can then be colored. While optimal graph col-
oring is NP-complete, there are efficient algorithms for pro-
ducing non-optimal colorings. A non-optimal coloring is also
preferred for this case, as more distinct colors in use permit
greater distinction between users. Graph coloring still has
the disadvantage, however, of permitting two non-adjacent
editors to have the same color, diminishing the ability of the
user to quickly recognize edits by different editors.

The other method, which we use for our interface, is to as-
sign distinct colors to distinct editors. This has the problem
of requiring many colors, but the number required can be
diminished by only assigning colors to active editors. We dis-
play all edits by anonymous editors in gray and all edits by
editors making fewer than five edits in the article’s lifetime in
black. Each editor with at least five edits in the page history
is assigned a distinct color. Figure 4, taken by computing
the maximum number of colors required for any article in
the main namespace in the January, 2008 Wikipedia dump,
shows that this threshold allows us to distinctly identify a
many users while avoiding the most substantial explosions
in the number of colors required.

In the current implementation, editors are sometimes as-
signed very similar colors. It should be possible to combine
the algorithms, using graph coloring to ensure that colors
editors working in close relational proximity to each other
have sufficiently different hues to permit easy distinction,
but we have not yet attempted this.

To indicate who originally created a particular state of the
text, the line connecting a revert to its parent is drawn in
the color of the edit that originally created the text. This
enables readers to not only see who first crafted a revision
but who has reverted the article back to that state.

4.3 Interaction
Existing Mediawiki history views support some basic in-

teractions to explore the history of an article. There are
navigation links to change the number of entries per page
and travel backwards and forwards in the article’s life and
support for comparing a revision with its parent, the current
revision, or an arbitrary revision. Arbitrary revision com-
parisons are supported via two columns of radio buttons
used to select the revisions to compare.

Our interface removes the radio buttons in favor of inter-
actions supported by the graphical display which support
the same tasks. Clicking on a revision’s symbol brings up
a menu (shown in Figure 3) that provides access to a diff
against the previous revision and enables the revision to be
“marked”. Marking a revision causes it to be visibly indi-
cated with a dotted circle and enables a further option in
the menus for other revisions: comparing with the marked
revision. This allows the user to compare any two revisions,
replicating the functionality of the radio buttons in the orig-
inal interface.

Edits required to have a distinct color

C
ol

or
s

re
qu

ire
d

1000

2000

3000

4000

5000

6000

5 10 15

●

●

●

●
●

● ● ● ● ● ● ● ● ● ●

Figure 4: Maximum colors required for various user
activity thresholds

Figure 3: History view with a tree visualization. The top revert is revision 5 in Figure 2.

We also augment the navigation controls with links to go
forward and backward by half the revisions-per-page count,
overlapping with the current display. In cases where a revi-
sion is connected to another revision not currently displayed,
the user can use this link to view both revisions on one page.

4.4 Implementation
We implemented the visualization interface in JavaScript

with jQuery for the Firefox web browser, using SVG to ren-
der the graphical display. For our prototype implementa-
tion, we use a server program written in OCaml to compute
the revision tree and do the layout computations, provid-
ing this information to the JavaScript interface in response
to an AJAX call. The visualization is embedded in a tem-
plate page built from the standard Mediawiki revision his-
tory view; client-side JavaScript rewrites it to include the
display after layout data is received from the server. Because
of this design, the visualization can be easily implemented
as an extension to existing wiki software (e.g. a Wikipedia
gadget).

5. CASE STUDIES
To demonstrate the utility of our visualization, we present

several case studies from Wikipedia articles that show how
the history tree diagram facilitates understanding of article
development. We selected the first two of these examples to
demonstrate how our tool presents events in articles which
have been considered in previous work on understanding re-
vision history. They remaining examples were selected to
demonstrate how our visualization displays various phenom-
ena occurring elsewhere.

5.1 Chocolate
Viégas et al. highlighted a revert war that occurred early

in the history of the “Chocolate” [14]. The dispute was over
whether a short paragraph mentioning chocolate’s rare use
in surrealistic art should be included in the article. The con-
flict started when an anonymous editor removed this para-

Figure 5: Revert war early in the history of “Choco-
late”.

graph from the article. Another editor then reverted the
article to re-insert the paragraph. This was followed by sev-
eral repetitions, as the paragraph was repeatedly removed
and re-inserted five times.

The history flow visualization depicted this conflict clearly
as a zig-zag pattern in the article’s length. The history tree
view, shown in Figure 5, shows this same event as parallel
branches with alternating revert emblems. These indicate
that the article oscillated between two states while the ed-
itors reverted each other. The visual language used is dif-
ferent from that in the history flow, but the fact that the
article state oscillated remains apparent. Further, the infor-
mation is displayed directly in the Wikipedia history view,
facilitating easy access by administrators or other interested
editors.

In this example, all three of our design goals are man-
ifest. Our visualization shows the right sequence of edits
discarded. The facts that these edits are all reverts back to
a prior state, and they are likewise being reverted, is also

Figure 6: History of Liancourt Rocks in late March
2005.

made apparent. Finally, the coloring shows that all of the
reverts to re-insert the edit were made by the same editor
and that most of the removals were made by anonymous ed-
itors (the one non-anonymous removal was by a relatively
inactive editor).

Revert wars such as this are a common occurrence in
Wikipedia articles, and are an easy pattern to identify in
history tree views. Colored history trees also facilitate detec-
tion of violations of the three-revert rule (3RR), a Wikipedia
policy forbidding editors from reverting the same page more
than three times in a 24-hour period2.

5.2 Liancourt Rocks
Kittur’s conflict and faction analysis [7] found substantial

revert activity and a clearly factioned editor community in
the article on “Liancourt Rocks”3 (then titled “Dokdo”), a
mostly uninhabitable rocky island between Japan and Ko-
rea. Due to the dispute between the two countries over
the ownership of the island, there has been disagreement
amongst Wikipedia editors over the article.

The history tree view, shown in Figure 6, makes the sig-
nificant revert activity evident in the lower half of the view.
In the course of the period displayed the page was renamed
from “Dokdo” (the Korean name for the island) to “Lian-
court Rocks” (a sovereignty-neutral name); there was some
contesting of this action, but the fighting settled into rela-
tive tranquility in the upper half of the view. There is one
revert from a future revision back to the page redirecting
to “Dokdo” after this point, but that attempted revert was

2http://en.wikipedia.org/wiki/Wikipedia:3RR
The three-revert rule was not yet in place when the Choco-
late event occured.
3http://en.wikipedia.org/wiki/Liancourt Rocks

"begins" edits

Figure 7: 2006 Atlantic hurricane season

itself rejected (this can be seen by the fact that it is not in
the far left column).

History tree views cannot display editor factions as clearly
as Kittur’s or Brandes’ visualizations [7, 4], but the coloring
does show some of these relationships when a few colors
show up frequently in particular sides of revert battles. In
Figure 6, this can be seen as the purple-colored editor (not
visible in grayscale) persistently attempts to restore Korean
naming to the article.

In general, periods of extensive multi-party or multi-version
revert activity will result in wide views with many easily-
identifiable revert edges. Colors can then be used to detect
users and factions persistently furthering the war.

5.3 2006 Atlantic hurricane season
Figure 7 shows a short period of volatility in the develop-

ment of the article“2006 Atlantic hurricane season”4. In this
event, occurring on June 1, 2006, there was a disagreement
over whether the 2006 hurricane season started at 00:00 EDT
or UTC. Finally one of the editors removed the start time
altogether; this was followed by an anonymous editor alter-
ing the article to refer to the start of the season in the past
tense rather than in future; this change was reverted twice.
Finally another editor made a pair of edits to fix format-
ting, resulting in a prior state of the article being restored.
From the edit comments, it seems that the restoration of
the old state was not a deliberate undo, but rather that the
sequence of edits happened to exactly undo the right branch
of the article’s development. Again, our tool shows clearly
the rejection of the spurious branch of development, and
also demonstrates that an edit was reverted, along with its
parents, by the same editor who made it. The restoration
edit is also displayed as a revert, but it is impossible to dis-
tinguish between deliberate reverts and inadvertent returns
of the article to a prior state.

5.4 WrestleMania III
Our last example comes from “WrestleMania III”5. This

page was subject to an edit war listed in Wikipedia’s list
of so-called “Lamest Edit Wars”6. This list describes vari-
ous disputes that have arisen over article content and were
played out through edits to the article rather than through

4http://en.wikipedia.org/wiki/2006 Atlantic hurricane season
5http://en.wikipedia.org/wiki/Wikipedia:WrestleMania III
6http://en.wikipedia.org/wiki/Wikipedia:Lamest Edit Wars

Figure 8: WrestleMania III

discussion on the article’s talk page. The conflict in Wrestle-
Mania III that was listed as a Lamest Edit War was primar-
ily over what attendance figure to report for the event: the
official figure of 93,173 reported by World Wrestling Enter-
tainment or the figure of 78,000 reported by an independent
journalist some editors described as “anti-Vince McMahon”.
In the tree, we can see a variety of attempts to change the
number. Some appear as revert wars, but a number are
manifest as one-edit branches in the long revert branch as
editors attempted to add the number with varying format-
ting (e.g. with and without a comma). The tree view shows
these as different edit attempts, but the result is the same: a
revert to the final conclusion of 93,173. The discarded work
is clearly shown, as is the persistence of the article state
representing the conclusion of the dispute. One particular
editor was responsible for many of the reverts; this is visible
in the color of the revision symbols.

The history tree also shows some side skirmishes visible
in this view, such as adding and removing a {{trivia}} label
in the article.

6. MORE ADVANCED STRUCTURING
While reverts are a useful means of detecting discarded

work, there are cases they cannot detect. If an editor whishes
to undo an edit and they click Mediawiki’s “undo” link, this
will result in a revert by default; if, however, they undo the
work by hand-editing the text to reverse the changes, they
may well create an new state that differs only slightly from

Revert CS AC

Figure 9: Inexact revert of three revisions in Choco-
late. The left column is a revert-based structure,
the middle cosine similarity, and the right adoption
coefficient.

some prior state of the article, such that it should effectively
be considered the same state. Figure 9 shows an example
of this happening; the left column shows the tree generated
using reverts and the second and third columns show trees
generated by our advanced algorithms described below. In
this event, the top revision undoes the next three revisions,
restoring the article to a state nearly identical to that of the
last revision – they differ only in that the top revision has
an extra blank line in the wiki markup. A similar problem
arises if a later editor combines removal of previous content
with another editing operation.

In order for the visualization to present a more complete
and accurate picture of whether the changes made by a par-
ticular edit were retained by subsequent editors of the arti-
cle, we would like to detect and display these more subtle
relationships. To this end, we explore two different mea-
sures of similarity to identify discarded work. The general
approach behind both is the same: if a revision is not iden-
tical to some prior state, find the most similar prior revision
and assume that the user discarded all work between that
revision and the present. This approach mirrors that used
by Sabel [12]; we add explicit revert detection, recast the
problem in terms of discarded work, and provide an addi-
tional similarity metric.

6.1 Cosine Similarity (CS)
A simple method of finding similar text is to compute

cosine similarity between term vectors generated from the
bag of words or tokens in the text. We employ this metric,
building vectors from all words (sequences of alphanumeric
characters) found in the article text. Our algorithm scans
backwards from the revision in question to find the most
similar revision.

In order to restrict how far back the program must search
and to cause it to favor more recent revisions even if they
are a slightly poorer match than a revision further back,
we multiple the cosine similarity measure by a generalized
logistic decay function d(t):

d(t) = 1− 1

(1 + e−0.05(t+35))1/0.006

This decay function has the property of decaying slowly
for 0 ≤ t ≤ 50 (the default span of a single page of revision
history), then dropping off and approaching its asymptote
near t = 150 (see Figure 10). Our development of this func-
tion was based on the assumption users are more likely to
base their work on recent revisions from the default history
view than older revisions.

6.2 Adoption Coefficient (AC)
Sabel proposed another similarity metric called the adop-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 50 100 150 200 250

d
(t

)

t

Figure 10: Plot of the decay function d(t).

tion coefficient [12]. The adoption coefficient between two
texts is computed from the edit script required to produce
one from the other (generated from LCS by tools such as
diff). This metric is based on the intuition that the most
similar prior revision is the one that the user reused the most
of to get the current revision.

To compute the adoption coefficient between two revisions
i and j, the text is first split into tokens (Sabel used“blocks”;
we use sentences, which are equivalent to blocks in most
cases) and the LCS of tokens between two revisions is com-
puted. The adoption coefficient is then computed as follows
(where l is the length of the LCS):7

ai,j = 1− len(j) + len(i)− 2l

len(j) + len(i)− l

The adoption coefficient (which falls in the range [0, 1]) is
then used in the same way as the cosine similarity to find
the most similar prior revision.

Computing the adoption coefficient requires significant
processing time, as LCS algorithms are quadratic in the
length of their inputs. The traditional dynamic program-
ming solution to LCS is Θ(mn), where m and n are the
lengths (in tokens) of the two texts to be compared. Hunt
and McIlroy devised an algorithm that runs in O(mn log m)
worst case time but fares far better in most common cases[5].
Myers proposed another algorithm that is efficient for highly
similar sequences, running in O(nd) (where d is the length
of the shortest edit script) with tight array-based loops, but
fares quite poorly for texts that differ greatly[9]. Our imple-
mentation, therefore, combines all three of these algorithms,
using a heuristic based on Rabin fingerprints [11] to deter-
mine whether the text is “similar enough” to use Myers’ al-
gorithm and, if not, using Hunt and McIlroy’s algorithm (or
the dynamic programming approach on short sequences to
take advantage of its tight inner loop and excellent constant
time performance). The program also strips common pre-
fixes and suffixes from the text to minimize the amount of
text that must be compared by the quadratic algorithm.

6.3 Results
As is demonstrated with the example in Figure 9, there are

cases in that the more sophisticated revision similarity com-
putations enable the visualization to more accurately rep-
resent the relationship between revisions. There are cases,
7Our definition is formulated differently from that used by
Sabel, but is mathematically equivalent and has the prop-
erty of depending only on the length of the LCS rather than
a complete edit script.

Revert CS AC

Figure 11: Portion of Adria history where CS cor-
rectly detects reversed work.

Revert CS AC

Figure 12: Portion of Abortion history where AC
accurately reflects edit and CS selects the wrong
parent.

however, where they do not accurately reflect the under-
lying changes. Further, the two algorithms are alternately
right and wrong in different cases, and there are difficulties
intrinsic to their operation that can cause confusion.

While AC’s intuitive basis is easy to understand and ex-
plain to users, it cannot respond accurately to textual rear-
rangements that leave the content of an article mostly un-
changed, such as moving a paragraph or section to a different
position in the article. Figure 11 shows one such case from
the history of the now-deleted article “Adria (Stargate)” –
Edit A substantially rearranged the text in the previous re-
vision without editing it significantly. AC (the right column)
sees a large edit between those two revisions and goes back
several revisions to find one with a smaller edit distance. In
doing this, it selected a parent revision that did not contain
a major section of the article that Edit A moved but did not
remove. CS (the middle column), since it is based only on
word counts and does not consider relative order, accurately
indicates that it is an incremental revision of the previous
version.

Figure 12, however, shows a case in the history of “Abor-
tion”8 where the AC algorithm (in the right column) accu-
rately shows that the editor creating the revision A was un-
doing a sequence of 4 edits ending at B without quite restor-
ing the article to an identical prior state. The CS structuring
algorithm indicated an attempt to roll back more work than
was actually done (to D); this seems to be a result of the
words changed between revisions D and C that have nothing
to do with the removed changes between C and B affecting
the term weights. Looking at the diffs between the revisions
involved indicates that the AC structure (A returning the
article to a state closest to C) more closely matches what

8http://en.wikipedia.org/wiki/Abortion

Revert CS

Figure 13: Exerpt from Brazil revision history
where an old revision was undone.

the author intended to do to the article.
Another case that presents a more fundamental problem

for advanced algorithms working with word-level tokens is
demonstrated in Figure 13 (taken from “Brazil”9). In this
case the most recent revision undid a change 5 revisions
back while leaving the subsequent changes intact. Since the
change that was reversed changed more text than the ones
extant, the CS structuring algorithm went back past the
removed revision to find the parent revision. This results in
a display that incorrectly shows all five edits as discarded.
The AC algorithm displays it more reasonably, rendering the
entire subtree as retained10.

Finally, vandalism, especially vandalism consisting of re-
placing the entire page with some other text, causes notable
problems for the advanced structuring algorithms. When
encountering a vandalized revision, they will search back
through the article’s history and select as the parent revision
some revision that doesn’t bear any identifiable connection
to the revision in question. Since vandalistic edits are not
good-faith contributions to the development of the article,
the assumption that the editor is bringing the article closer
to a desired end state and that there may be some previ-
ous state that was close to their goals simply does not ap-
ply. Applying a vandalism detector prior to the structuring
and considering vandalized revisions to be the child of the
previous revision may reduce the impact of this particular
problem.

In our experience, these problems arise frequently enough
that the potential clarity gained by these more sophisticated
algorithms is outweighed by the noise and confusion intro-
duced by the bad structuring decisions they yield. Further,
some of the problems seem to point to a fundamental in-
capacity of term vector cosine similarity and adoption coef-
ficients to meaningfully analyze degenerate situations that
arise in the wild in Wikipedia, rather than being merely
artifacts of algorithmic details or implementation. This is
particularly true of the problem of vandalism, as it renders
false the basic assumption underlying using these metrics for
tree structuring. The difficulties in detecting an old revision
being redacted while leaving subsequent edits intact have a
similarly deep impact on any algorithm dealing with the ar-
ticle in terms of small tokens; the sentence tokens render AC
resilient in our example, but at the word level the reversal
of the more substantial edit will likely outweigh the minor
edits left in place for any algorithm.

6.4 Performance Characteristics
9http://en.wikipedia.org/wiki/Brazil

10When we run AC over alphanumeric tokens rather than
sentences, it produces the same tree as CS.

Page # revs Basic CS AC
Adria (Stargate) 246 0.00 0.84 2.15
WrestleMania III 823 0.00 4.09 12.76
2006 hurricanes 2775 0.02 31.24 175.02
Liancourt Rocks 3825 0.03 63.67 561.63
Chocolate 4455 0.01 66.26 319.54
Abortion 8785 0.07 194.32 1467.23
Brazil 8929 0.05 260.03 2177.30

Table 1: Time required to to build history trees (sec-
onds of user-space CPU time; 0.00 indicates times
less than 1/100 of a second).

An additional difficulty with both the CS and AC algo-
rithms is that they require the full text of each revision avail-
able to construct the history tree. They are also computa-
tionally intensive, as searching backwards through history
causes the algorithm’s worst case run time to be quadratic
in the number of revisions in the article. The problem is fur-
ther compounded for AC, as the underlying LCS algorithms
themselves have quadratic worst-case behavior in the num-
ber of tokens in the revisions compared.

Table 1 shows the time required to compute history trees
for various pages. Time is reported in seconds of user-space
CPU time required to construct the tree (not including the
time needed to load the article’s revision history). The arti-
cle data was taken from the January 2008 full dump of En-
glish Wikipedia, and the timings were collected on a 2GHz
quad-core Intel Xeon with 8GB of RAM11. To save mem-
ory, our program stores revision text and token sequences
in hash tables that swap out to disk-based maps when they
exceed a set number of entries; our threshold for these tests
was 1000 entries per table (so pages with more than 1000
revisions were likely to use disk-based tables).

6.5 Summary
In light of the problems CS and AC have with various

editing phenomena, we believe that they do not enhance the
ability of the visualization to accurately and clearly repre-
sent the development of the article through its history. This,
combined with the noticeable computational effort required
to build trees with these algorithms and the relative effi-
ciency of the revert-only algorithm lead us to conclude that
the revert-only structuring algorithm is, at present, better
for representing revision relationships.

7. COMPUTATIONAL METHODS
Revision history trees can also be used computationally

to determine properties of revisions and articles.

7.1 k-acceptance
If we consider the revision tree to represent what work the

community considered worth using as a basis for the contin-
ued development of the article and what work needed to be
discarded, we can define a computable measure to determine
community opinion of a revision. We say that a revision is
accepted if the community used it as a step in the further
development of the article rather than removing its contri-
bution. In terms of our tree, a revision is accepted if it is on

11Our program is currently single-threaded, so it is only using
one of the cores per process.

the path leading to some hypothetical“final” state of an arti-
cle towards which the editors are moving the article. Merely
checking if a revision has been reverted is not sufficient, as
it may be that a later edit undoes the revert.

Since Wikipedia articles are never finished, and any anal-
ysis of history necessarily occurs at particular point in time,
we limit the lookahead by defining k-acceptance. This en-
ables us to formulate a well-defined notion of acceptance
irrespective of work that has yet to happen.

To avoid saying revisions are unaccepted simply because
there is insufficient history available after their creation, we
declare k-acceptance to be undefined for certain revisions.
This mitigates the effect of the temporal frontier on accep-
tance of revisions.

Definition 1. Let r be a revision, k a positive integer,
and H a directed acyclic article history graph12. Then r is
k-accepted in H if there is a path of length k + 1 in the
history graph starting from r.

Whether r is k-accepted in H is undefined if there is some
r′ such that r′ is connected to the last revision in H by a
path of length k and r′ was created before r.

The intuition underlying this definition is that k-acceptance
reflects whether the editing community considered a revision
worth building on for at least k further revisions.

7.2 Picking k

As k increases, k-acceptance is able to more closely ap-
proximate the acceptance of a revision with respect to the
hypothetical final state of the article. The effect this has
on acceptance of individual revisions is that some revisions
which were accepted for some lower k will not be k-accepted.
Increasing k will also cause k-acceptance to be undefined for
a greater number of revisions. By Lemma 1, revisions which
are rejected for some k will also be rejected for all greater
values of k.

Lemma 1. Let r be a revision which is not k-accepted in
H. Then for every j > k, if j-acceptance is defined for r in
H, r is not j-accepted.

Proof. Suppose r is j-accepted. Then there is a path
of length j + 1 starting at r. There is a prefix of this path
that has length k + 1, and thus r is k-accepted, which is a
contradiction.

We note that increasing the amount of history available
has the opposite effect: it will cause k-acceptance to be de-
fined for more revisions, and may cause some previously un-
accepted revisions to be accepted.

Lemma 2. Let r be k-accepted in H. Let H′ be obtained
by adding additional revisions to the end of the history used
to generate H. Then r is k-accepted in H′.

Proof. Adding revisions to a history tree will leave all
edges in the original tree intact, and thus all paths. There-
fore there is still a path of length k + 1 starting from r in
H′.

12While we only consider trees in this work, the definition of
k-acceptance is equally applicable when history structures
are permitted to be arbitrary DAGs.

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

%
 o

f
to

ta
l
re

v
is

io
n

s

k
Undefined

Rejected
Accepted

Figure 14: Classification of revisions as k increases.

 0.82

 0.83

 0.84

 0.85

 0.86

 0.87

 0.88

 0.89

 0.9

 0 10 20 30 40 50 60 70 80 90 100

a
c
c
e
p
te

d
 /
 d

e
fi
n
e
d

k

Figure 15: Fraction of articles accepted.

Since increasing k both causes k-acceptance to be more
accurate and renders it undefined for more revisions, it is
desirable to be able to use as small a k as possible while still
detecting discarded work in order to maximize the usefulness
of k-acceptance. To determine how low k can be while re-
taining most of the information value of k-acceptance when
analyzing Wikipedia articles, we computed k-acceptance for
26 values of k in the range 2 to 100 on the revert-based
history graph for each article in the Wikipedia main arti-
cle namespace as of January 2008. Figure 14 shows how
the classification of revisions changes as k increases, and
Figure 15 shows how the fraction of articles for which k-
acceptance is defined are k-accepted decreases as k increases.
From this data, it seems that 15 is a reasonable value for k
for practical use, as it takes into account the steepest change
in percent accepted while allowing k-acceptance to be de-
fined for a good fraction of revisions.

7.3 Applications
k-acceptance can be used to select a revision to analyze

corresponding to a particular point in time. If a revision is
desired corresponding to some event (e.g. a talk page edit or
newscast), it may be that the last revision before that time
was damaged or vandalized and that a human editor would
revert it before working further with the article. It is diffi-
cult, however, to programmatically determine whether the
revision being examined would be reverted. k-acceptance
allows us to look into the future and see what editors look-
ing at the revision did do and base our decision as to what

revision to consider on that13.
k-acceptance can also be used to quantify wasted or dis-

carded work in an article over a period of time by computing
k-accepted revisions per revision (k-ARpR) for an article
over a time period. This metric captures how much work
done over a period of time was discarded by the community
verus how much was kept; a perfect score of 1.0 means that
no work in the period was discarded. Computing k-ARpR
over successive windows in the history of an article could
provide a rolling metric of how much work has been wasted
(frequently due to conflict) at various points in the article’s
history.

8. CONCLUSIONS AND FUTURE WORK
We have presented a means of structuring the history of a

wiki article as a tree that represents the relationships among
the article’s revisions. We looked at a visualization of these
relationships that can be integrated in-line with existing his-
tory views. Through case studies we examined the benefits
of this tree in making salient key properties of article his-
tory, especially during times of high conflict. This structure
and display should be useful in understanding the history of
any Wiki page, although some types of pages (such as Me-
diawiki talk pages) will derive less benefit due to different
editing patterns yielding less meaningful relationships.

Our visualization can be implemented as a gadget or other
add-on for existing wiki software such as the Mediawiki en-
gine behind Wikipedia. We believe it has potential to fa-
cilitate easier understanding of history for administrators,
mediators, editors, and curious Wikipedia readers. Future
work may involve incorporating even richer sets of data into
the visualization, such as the experience of the editors in-
volved or the age of the words in the article.

We explored three algorithms for constructing the arti-
cle history trees. The basic algorithm only considers di-
rect revert actions. This algorithm misses more subtle re-
lationships. The more advanced algorithms are better at
detecting these subtle relationships, but are misled by com-
mon Wikipedia editing patterns such as moving a paragraph
within an article. Our experience suggests that these errors
are fundamental to algorithms of this class. Future work
should explore more sophisticated algorithms that are de-
signed for the types of word manipulation that are common
in editing natural language documents. Developing algo-
rithms that are sufficiently sensitive and yet computation-
ally tractable will be a challenge.

9. ACKNOWLEDGEMENTS
We gratefully acknowledge our research lab, GroupLens

Research, and in particular Aaron Halfaker and Tony Lam
for their help and support in this work.

This work is funded by the National Science Foundation
grants IIS 05-34420 and IIS 08-08692.

10. REFERENCES
[1] B. T. Adler and L. de Alfaro. A content-driven

reputation system for the Wikipedia. In Proceedings of
the 16th international conference on World Wide Web,
pages 261–270, Banff, Alberta, Canada, 2007. ACM.

13Naturally, more accurate history trees will provide more
accurate results for this purpose.

[2] S. Alshattnawi, G. Canals, and P. Molli. A Nonlinear
Representation of Page History in P2P Wiki System,
volume 286 of IFIP International Federation for
Information Processing, pages 151–160. Springer,
Boston, 2008.

[3] R. P. Biuk-Aghai. Visualizing co-authorship networks
in online Wikipedia. In Communications and
Information Technologies, 2006. ISCIT ’06.
International Symposium on, pages 737–742, 2006.

[4] U. Brandes and J. Lerner. Visual analysis of
controversy in user-generated encyclopedias.
Information Visualization, 7(1):34–48, 2008.

[5] J. W. Hunt and M. D. McIlroy. An algorithm for
differential file comparison. Technical Report 41, Bell
Laboratories Computing Science, 1976.

[6] A. Kittur, B. Suh, and E. H. Chi. Can you ever trust
a wiki?: Impacting perceived trustworthiness in
Wikipedia. In Proceedings of the ACM 2008
Conference on Computer Supported Cooperative Work,
pages 477–480, San Diego, CA, USA, 2008. ACM.

[7] A. Kittur, B. Suh, B. A. Pendleton, and E. H. Chi. He
says, she says: Conflict and coordination in
Wikipedia. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages
453–462, San Jose, California, USA, 2007. ACM.

[8] P. Mackerras. gitk - the git repository browser.

[9] E. W. Myers. An O(ND) difference algorithm and its
variations. ALGORITHMICA, 1:251—266, 1986.

[10] P. Pirolli, E. Wollny, and B. Suh. So you know you’re
getting the best possible information: A tool that
increases Wikipedia credibility. In Proceeding of the
Twenty-Seventh Annual SIGCHI Conference on
Human Factors in Computing Systems (to appear),
Apr. 2009.

[11] M. O. Rabin. Fingerprinting by random polynomials.
Technical Report TR-15-81, Center for Research in
Computing Technology, Harvard University, 1981.

[12] M. Sabel. Structuring wiki revision history. In
Proceedings of the 2007 International Symposium on
Wikis, pages 125–130, Montreal, Quebec, Canada,
2007. ACM.

[13] B. Suh, E. H. Chi, A. Kittur, and B. A. Pendleton.
Lifting the veil: Improving accountability and social
transparency in Wikipedia with WikiDashboard. In
Proceeding of the Twenty-Sixth Annual SIGCHI
Conference on Human Factors in Computing Systems,
pages 1037–1040, Florence, Italy, 2008. ACM.

[14] F. B. Viégas, M. Wattenberg, and K. Dave. Studying
cooperation and conflict between authors with history
flow visualizations. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
pages 575–582, Vienna, Austria, 2004. ACM.

[15] H. Zeng, M. A. Alhossaini, L. Ding, R. Fikes, and
D. L. McGuinness. Computing trust from revision
history. In Proceedings of the 2006 International
Conference on Privacy, Security and Trust: Bridge the
Gap Between PST Technologies and Business Services,
pages 1–1, Markham, Ontario, Canada, 2006. ACM.

