
rv you’re dumb
Identifying Discarded Work in Wiki Article History

Michael Ekstrand John Riedl
{ekstrand,riedl}@cs.umn.edu

GroupLens Research
Department of Computer Science

University of Minnesota

WikiSym 2009

Ekstrand and Riedl (GroupLens/UMN) rv you’re dumb WikiSym 2009 1 / 27



Wiki article history

Problem...

History isn’t linear.

Sometimes the article goes backwards
before it goes forwards.

Ekstrand and Riedl (GroupLens/UMN) rv you’re dumb WikiSym 2009 2 / 27



Wiki article history (cont.)

Questions
1 What is the lineage of the article’s

current state?

2 What revisions got thrown away? Did
mine get thrown away? How much
work in general is being discarded?

3 At a particular time, what revision is
most representative of the article’s
“true” state?

4 If there is an edit/revert war, who is
involved? Who (if anyone) violated
the 3RR?

Ekstrand and Riedl (GroupLens/UMN) rv you’re dumb WikiSym 2009 3 / 27



What’s coming

1 Building history trees

2 Visualizing history trees

3 Computing on history trees

4 Improving tree building

5 Conclusion

Ekstrand and Riedl (GroupLens/UMN) rv you’re dumb WikiSym 2009 4 / 27



Where we’re at

1 Building history trees

2 Visualizing history trees

3 Computing on history trees

4 Improving tree building

5 Conclusion

Ekstrand and Riedl (GroupLens/UMN) rv you’re dumb WikiSym 2009 5 / 27



Building a history tree – example

1 “Hello”

2 “Hello, world”

3 “Good afternoon, world”

4 “Good afternoon, Orlando”

5 “Hello, world”

6 “Hello, world{citation needed}”

The file blfull.eps hasn’t been created from blfull.dot yet.
We attempted to create it with:
‘dot -Tps2 -o blfull.eps blfull.dot’
but that seems not to have worked. You need to execute ‘pdflatex’ with
the ‘-shell-escape option. You also need ‘epstopdf’ from CTAN.

Ekstrand and Riedl (GroupLens/UMN) rv you’re dumb WikiSym 2009 6 / 27



History tree algorithm

1

2 8

3

4

5 7

6

9 1 0

1 1

1 2

1 3

1 4

We build a tree rooted at the first
revision in the article’s history.

Add each revision in chronological
order:

If a revision is different from all
prior revisions, it is an edit node
whose parent is the previous
revision.

If a revision is identical to some
prior revision, it is a revert node
whose parent is the most recent
identical revision.

Ekstrand and Riedl (GroupLens/UMN) rv you’re dumb WikiSym 2009 7 / 27



Previous work on history structuring

[Sabel, 2007] used text retention to find parents.

How our work differs:

More conservative

Basic algorithm has unambiguous mappings to editor actions

Designed to support specific tasks in a well-defined manner

Ekstrand and Riedl (GroupLens/UMN) rv you’re dumb WikiSym 2009 8 / 27



Where we’re at

1 Building history trees

2 Visualizing history trees

3 Computing on history trees

4 Improving tree building

5 Conclusion

Ekstrand and Riedl (GroupLens/UMN) rv you’re dumb WikiSym 2009 9 / 27



End-user use cases

How might a wiki user want to use history trees?

Analyzing content disputes
Who was involved in this edit/revert war? How did it play
out?

Satisfying curiosity
How did the article get to its current state? What work was
used in that development?

Ekstrand and Riedl (GroupLens/UMN) rv you’re dumb WikiSym 2009 10 / 27



Visualization objectives

To make these trees accessible to users, we developed a graphical tree
view that meets four design criteria.

1 Indicate accepted and rejected revisions

2 Clearly mark reverts

3 Indicated shared authorship

4 Integrate with existing history views

gitk provided our inspiration for making this happen.

Ekstrand and Riedl (GroupLens/UMN) rv you’re dumb WikiSym 2009 11 / 27



Visualization design

Ekstrand and Riedl (GroupLens/UMN) rv you’re dumb WikiSym 2009 12 / 27



Case study: Chocolate [Viégas et al., 2004]

The revert war examined in “Studying cooperation and conflict”:

Ekstrand and Riedl (GroupLens/UMN) rv you’re dumb WikiSym 2009 13 / 27



Case study: WrestleMania III

Ekstrand and Riedl (GroupLens/UMN) rv you’re dumb WikiSym 2009 14 / 27



Where we’re at

1 Building history trees

2 Visualizing history trees

3 Computing on history trees

4 Improving tree building

5 Conclusion

Ekstrand and Riedl (GroupLens/UMN) rv you’re dumb WikiSym 2009 15 / 27



Computationally determining acceptance

Two questions in computational analysis:

1 Was a particular revision retained or discarded?

2 At a particular time, what revision is most representative of the
article’s “true” state?

Our intuition: use later editing activity to determine the community’s
response.

Ekstrand and Riedl (GroupLens/UMN) rv you’re dumb WikiSym 2009 16 / 27



Computationally determining acceptance

Difficulties:

Cannot just check for a revert – what if the revert is reverted?

Ultimate end state of the article is inaccessible, so cannot see if
revision is in path to end state.

Goal: A notion of “accepted” revisions that

Handles reverted reverts

Avoids saying things about revisions overly affected by the temporal
frontier

Is well-defined

Ekstrand and Riedl (GroupLens/UMN) rv you’re dumb WikiSym 2009 17 / 27



k-acceptance

k-acceptance: see whether there’s a path of k edits leading from a revision.

Acceptance near the end of history is undefined.

A sample tree indicating k-acceptance for k = 3:

1

2 8

3

4

5 7

6

9 1 0

1 1

1 2

1 3

1 4

Ekstrand and Riedl (GroupLens/UMN) rv you’re dumb WikiSym 2009 18 / 27



Picking k

Two properties of k-acceptance:

1 Increasing k decreases the likelihood of labeling as accepted a revision
which is ultimately rejected.

2 Increasing k decreases the number of revisions for which k-acceptance
can be computed.

We therefore want to select a k that balances the twin concerns of
accuracy and defineability (and thus usefulness).

Ekstrand and Riedl (GroupLens/UMN) rv you’re dumb WikiSym 2009 19 / 27



Picking k (cont.)

We computed acceptance over all of Wikipedia’s main namespace for
various values of k .

 0

 20

 40

 60

 80

 100

 10  20  30  40  50  60  70  80  90  100

%
 o

f 
to

ta
l 
re

v
is

io
n

s

k

Classification of revisions

Undefined
Rejected
Accepted

 0.82

 0.83

 0.84

 0.85

 0.86

 0.87

 0.88

 0.89

 0.9

 0  10  20  30  40  50  60  70  80  90  100

a
c
c
e

p
te

d
 /

 d
e

fi
n

e
d

k

Fraction of articles accepted

It seems that 10 ≤ k ≤ 20 (say, k = 15) is a reasonable choice.

Ekstrand and Riedl (GroupLens/UMN) rv you’re dumb WikiSym 2009 20 / 27



Where we’re at

1 Building history trees

2 Visualizing history trees

3 Computing on history trees

4 Improving tree building

5 Conclusion

Ekstrand and Riedl (GroupLens/UMN) rv you’re dumb WikiSym 2009 21 / 27



Limitations of basic tree building

There are some actions which may constitute discarded work, but which
do not appear as reverts.

Manually almost-revert a revision

Partially revert a revision

Undo a revision while making other changes

Ekstrand and Riedl (GroupLens/UMN) rv you’re dumb WikiSym 2009 22 / 27



Framework for more advanced tree building

We attempted to go beyond reverts based on the following intuition:

An editor has in their mind some target state for the article and
edits the article so as to bring it closer to their desired target
state.

This suggests a modification to our earlier algorithm:

If a revision is identical to some prior revision, it is a revert node
whose parent is the most recent identical revision.

Otherwise, the revision is an edit node whose parent is the most
similar previous revision [Sabel, 2007].

Ekstrand and Riedl (GroupLens/UMN) rv you’re dumb WikiSym 2009 23 / 27



Similarity metrics

We consider two metrics for comparing revisions:

Cosine Similarity (CS)
Standard cosine similarity between bag-of-words
representations.

Adoption Coefficient (AC) [Sabel, 2007]
Metric of retained text based on
longest-common-subsequence.

In both cases, we adjust by a damping factor.

Ekstrand and Riedl (GroupLens/UMN) rv you’re dumb WikiSym 2009 24 / 27



Problems with CS and AC

We have found some difficulties applying these algorithms in practice:

O(n2) performance (and LCS itself is slow)

Word-level tokens allow large changes to dominate small changes

Extreme vandalism breaks the underlying assumption and produces
unpredictable results

AC does not respond well to content moves

CS results can be difficult to understand

Further, it is unclear how some cases (such as undoing old revisions)
should be handled, and this difficulty remains for any future solutions.

Ekstrand and Riedl (GroupLens/UMN) rv you’re dumb WikiSym 2009 25 / 27



Where we’re at

1 Building history trees

2 Visualizing history trees

3 Computing on history trees

4 Improving tree building

5 Conclusion

Ekstrand and Riedl (GroupLens/UMN) rv you’re dumb WikiSym 2009 26 / 27



Conclusion and contributions

Basic revision history structuring (steps back from Sabel 2007)

In-line visualization method for history trees

Computational method for determining whether a revision has been
“accepted” by the editing community around a page in a well-defined
manner

Consideration of additional structuring algorithms and explanation of
current defects

There are open questions about doing a better job of detecting
discarded work (and, in some cases, what “better” even means)

Questions?

Funded by NSF grants IIS 05-34420 and IIS 08-08692

Ekstrand and Riedl (GroupLens/UMN) rv you’re dumb WikiSym 2009 27 / 27


	Building history trees
	Visualizing history trees
	Computing on history trees
	Improving tree building
	Conclusion

