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ABSTRACT

Traditional offline evaluations of recommender systems apply met-
rics from machine learning and information retrieval in settings
where their underlying assumptions no longer hold. This results in
significant error and bias in measures of top-N recommendation
performance, such as precision, recall, and nDCG. Several of the
specific causes of these errors, including popularity bias and mis-
classified decoy items, are well-explored in the existing literature. In
this paper we survey a range of work on identifying and addressing
these problems, and report on our work in progress to simulate the
recommender data generation and evaluation processes to quantify
the extent of evaluation metric errors and assess their sensitivity
to various assumptions.
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1 INTRODUCTION

Traditional offline experiments to evaluate top-N performance of
recommender systems typically use metrics and methodologies
borrowed from information retrieval and machine learning. The
evaluation procedure partitions the user consumption data (such
as movie ratings, music likes, etc.) into training and test sets, trains
recommendation algorithms on the training set, generates recom-
mendation lists from a set of candidate items for each user, and
tests the retrieval or ranking accuracy using the withheld test data
as ground truth.

Recommendation scenarios rarely have complete ground truth
data, however. This is particularly true for data sets commonly used
for offline evaluation in academic research. The standard procedure
is to assume that items the user has never rated or consumed are
irrelevant; while this assumption is true most of the time, it fails
to hold in critical situations that severely undermine the external
validity of classical offline evaluations.

In this paper, we present our approach to quantifying the extent
and impact of these errors. This ongoing work will yield better
insight into precisely how erroneous current evaluation practices
are, and we hope that it will also yield statistical techniques and
experimental designs to compensate for these errors.
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This work complements other lines of research that tackle the
validity problems in offline evaluation with less-biased estimators
[14], protocol tweaks [3, 7, 8], and reframing the problem [4, 12].

2 PROBLEM FRAMING

To measure the accuracy of a recommendation list with a metric
such as precision, nDCG, or MRR, the evaluation procedure re-
quires relevance data for all recommended items: for each item,
it needs to know whether or not the item is relevant to the user
and/or context, or its degree of relevance for metrics that can use
such information. This information (or a reasonable proxy for it) is
available in certain settings, such as supervised machine learning
and TREC competitions. Recommendation scenarios, however, lack
such data, and information retrieval techniques for obtaining it such
as pooling and relevance imputation are not usually appropriate
for recommendation scenarios due to the personalized nature of
relevance. This leaves us with two primary solutions:

(1) If known relevance judgments are relative (e.g. ratings), re-
strict the recommender to rank only items with known rel-
evance, and compare its results against the relevance judg-
ments (rank effectiveness).

(2) Assume unrated or unconsumed items are irrelevant.

Most evaluations make assumption (2). This assumption is gen-
erally true for individual items [8]; however, it is incorrect in key
ways that undermine the validity of resulting evaluations.

Misclassified decoys arise when the user would like an item,
but has never rated it in either the training or the test item. This
item should be considered a good recommendation, but the evalu-
ation will treat it as irrelevant and penalize the recommender for
recommending it. In applications where the recommender should
help the user discover new items, this is deeply problematic: a
recommender that can accurately find those items the user would
like, but may never have found through their existing discovery
channels, will perform worse than one that can replicate the user’s
existing knowledge.

Popularity bias is the effect that evaluations favor algorithms
that recommend popular items significantly beyond the intrinsic
usefulness of popularity as a recommendation signal. It arises be-
cause popular items are more likely to be rated or consumed in both
the training and test data; a popular recommendation is therefore a
correct answer more often than an unpopular one just because it is
popular, not because it matches user taste.

Combined, these problems cause significant challenges for eval-
uating recommender effectiveness. Popularity bias rigs the evalu-
ation in favor of certain recommendation signals, and misclassi-
fied decoys keep the evaluation from identifying and rewarding
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an algorithm that can substantially outperform existing social or
algorithmic discovery mechanisms.

The exact impact of these problems on metric errors remains
unknown, and we seek to estimate it.

3 RELATED WORK

There are several existing approaches to addressing or measuring
these problems that inform and complement our work.

3.1 Changing the Protocol

One proposed solution to evaluation difficulties is to change the
protocol, particularly the way that test items and candidate items
are selected, to neutralize the problem. [1] proposed alternative
data split strategies to address popularity bias, both focused on
compensating for the rate at which different items appear in the test
set. One is to aggregate evaluation metrics by popularity quantile;
this enables analysis of the algortihm’s effectiveness at different
popularity levels, and ensures that the least popular quantile of
items influences the final score as much as the most popular quantile.
The second is to sample the test data so that each item appears as
a test item an equal number of times; grouping data by item and
sampling N users who have rated that item will accomplish this.
These methods affect absolute metric values, but not necessarily
the relative performance of algorithms [2].

Similarly, changing how candidate items — the items the rec-
ommender considers when producing its top-N list — are selected
may be useful in addressing misclassified decoys. Typically, evalua-
tions use all items that aren’t in the user’s set of training ratings
as candidates; using a candidate set consisting of the user’s test
items plus a random sample of unrated items decreases the likeli-
hood of misclassified decoys, because if unknown relevant items
are relatively rare, they are probably not going to be picked as a
part of the sample [7]. However, this method’s usefulness relies
on unrealistically strong assumptions of the rareness of unknown
relevant items, and it likely exacerbates popularity bias [8].

3.2 Unbiased Estimators

Another proposed solution is to select evaluation metrics that admit
statistically unbiased estimators using the observed data. Under as-
sumptions that (1) ratings for relevant items are missing at random
and (2) the non-relevant ratings have a higher probability of being
missing than the relevant ones, computing top-k hit rate (recall)
using observed data is an unbiased estimator for the true value
[14]. Under the same assumptions, computing non-normalized dis-
counted cumulative gain with observed implicit feedback data is an
unbiased estimator for the true value based on complete data [13].

There are two significant limitations to this approach. First, it
limits the choice of metrics; in assessing recall, Steck [14] observes
that computing precision with observed data is not an unbiased
estimator. Lim et al. [13] show that the more common normalized
discounted cumulative gain is biased, so that producing an unbiased
estimate requires sacrificing normalization. In general, therefore,
this approach requires a tradeoff between statistical validity and
appropriateness of the metric to the task. If the recommendation
task is best captured by a metric without an unbiased estimator,
then effectiveness for that task cannot be reliably assessed.
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Second, the necessary assumptions are unlikely to hold in real-
istic scenarios. Ratings or consumption events are not sampled at
random from the relevant items; the user’s choice of items to rate
is based on a complex discovery process based on user knowledge,
social networks, and existing discovery tools.

3.3 Counterfactual Learning and Evaluation

One particularly powerful means of addressing the weaknesses of
offline evaluation is to reframe the recommendation and evalua-
tion problem as a counterfactual learning problem [4, 9, 15]. This
approach aims to reconstruct from offline data an estimate of how
the user would have responded had they received a different recom-
mendation. Counterfactual evaluation has the enormous benefit of
actually measuring the problem that we most often care about, par-
ticularly from business and user response perspectives: the ability
to recommend items the user will accept.

Its downside is that it represents a substantial break from his-
torical practice and often is not applicable to commonly-used data
sets. While we should — and do — welcome such breaks when
they move the field forward substantially, we would also like to
understand how much knowledge under the old paradigm can be
carried forward, and develop techniques when possible that can be
used with more common data sets. The largest available data set for
contextual evaluation, from Criteo [9], is valuable but also opaque:
the lack of descriptors for item features means that less insight can
be obtained about algorithm behavior and performance.

4 SIMULATING EVALUATION

Neither reframing the problem to avoid the pitfalls of classical eval-
uation nor choosing demonstrably unbiased estimators answers
a key question for interpreting previous results: just how wrong
are they? Further, the widespread availability of data, metrics, in-
structions, and tools for classical evaluations makes them relatively
easy to perform; if there is a way to improve their accuracy that
can be deployed in existing scenarios, such techniques would sig-
nificantly improve the reliability of recommender systems research
and testing.

The most promising technique we see for this work is simulation.
Since, by its very nature, we cannot know the underlying ground
truth for observed data, and we do not know the particular process
by which the observed data was generated, we can’t (except in a few
limited circumstances) look behind the data to compare observed
metric values to what they would be if we had complete relevance
data. Simulation, however, lets us open the curtain: by generating
complete and observed data under a range of scenarios, we can
look at how the observed results vary based on different possible
observation processes.

4.1 Existing Simulations

Canamares and Castells [5] built a probabilistic model to analyze
the conditions that determine the usefulness of popularity in rec-
ommender systems and better understand popularity bias under
various conditions. They defined optimal ranking strategies that
maximize the true or observed precision for non-personalized rec-
ommendation. By changing the conditional independence among
three variables —- item relevance, item discovery, and item rating
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— the authors analyzed how the popular recommender and the
average rating recommender perform compared to optimal and
random recommenders under both observable and true precision.
They found that the most-popular recommender is close to the
optimal recommender in observed precision and the average-rating
recommender is close to optimal in true precision if rating pres-
ence is conditionally independent of relevance or no independence
assumptions are made. Their analysis implicitly assumes that each
of those three variables for every user is independent and identi-
cally distributed. They also created a complete data set by asking
users to rate songs and indicate whether they had heard the song
before rating, allowing for empirical confirmation of the theoretical
results. With this data, they found concurring results: the popular
recommender works better than the average rating recommender
and both recommenders outperform the random recommender in
precision and nDCG computed on observable data (only consider-
ing relevance on the ratings that the user have heard before). But
when using the complete data, the popular recommender is worse
than the average rating recommender, and its precision is even
worse than that of the random recommender. They also found that
using complete data instead of observable data changes the relative
performance of collaborative filtering algorithms in some cases.

4.2 Simulation Goals

Building on Cafiamares and Castells [5], we are using simulations
to address several questions about the error in evaluation metrics
(the difference between their values under observable data and their
values under complete data):

(1) How is metric error distributed for commonly-used evalua-
tion metrics?

(2) How does metric error distribution change as we change the
underlying relevance distribution (data generation process)?

(3) Is the metric error distribution stable across recommendation
algorithms?

(4) What ranges of data generation process structures and pa-
rameters produce observable data sets comparable to existing
data sets on key statistics such as item popularity distribu-
tion?

(5) What effect do assumptions such as the independence as-
sumptions in Cafiamares and Castells’ work have on error
distributions?

We hope to use this knowledge to adjust evaluation and analysis
techniques to compensate for the observed effects, but documenta-
tion of the extent of the problem is a useful research outcome even
if it does not seem to be solvable.

4.3 Simulation Approach

We address these questions by simulating the recommender evalu-
ation process, from data generation to metric computation, under
controlled conditions. This will allow us to estimate the effect of
variations in different stages of an offline evaluation on its accuracy.

When finished, our simulation code will enable us to configure
the following:

(1) Underlying true user-item relevance distribution, including
models with correlated preferences.
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(2) Data observation process, resulting in data comparable to a
typical recommender evaluation data set.

(3) Experimental data splitting strategy.

(4) Recommendation technique, including oracle recommenders
that have access to the true data.

(5) Evaluation metrics, using both true and observable data.

Step (2) provides a calibration point, as we can compare key sta-
tistics such as item popularity and co-rating distributions between
the output of our data simulation process and existing data sets
such as MovieLens, Last.fm, and the Amazon Reviews data. Pro-
ducing multiple simulated data sets comparable to published data,
but differing in their underlying relevance distributions and obser-
vation processes, will enable us to quantify the extent to which
violations of experiments’ assumptions about the data generation
process invalidate their results.

Step (4) will allow us to address important questions such as how
often an experimental protocol will reject a perfect recommender;
probabilistic oracle recommenders will enable us to answer ques-
tions such as ‘if a recommender has precision of 80%, with errors
randomly distributed, what will its observed precision be?’.

5 DATA AND TOOLS

We have several common data sets on hand for calibrating and
tuning our observed data simulators, including:

(1) MovieLens [10]

2) BookCrossing [16]

3) Amazon Reviews [11]

4) Last.fm music play counts [6]

5) ACM Digital Library metadata, including the citation graph
for older articles

(
(
(
(

We will also use the data collected by Cafamares and Castells
[5] for further calibration and confirmation of our results.

We are implementing our simulation code in Python, and will
make this code available upon publication of results. We will lever-
age the LKPY recommender toolkit for evaluation metrics and col-
laborative filtering implementations.

6 EARLY RESULTS

We have begun work on simulating users’ true preferences by uni-
form selection and an Indian buffet process, and sampling observa-
tions from the true preferences by uniform sampling and popularity-
weighted sampling. We then use an oracle recommender to produce
optimal recommendations and compute common evaluation met-
rics including precision, recall, and nDCG. with both observed and
complete data. Consistent with the findings of [14], we find ob-
served recall values generally symmetrically distributed around
true recall. Precision and nDCG show large deviations between
metric distributions computed from observed data and complete
data.

7 CONCLUSION

This work will improve the state of the art in offline evaluation by
shedding light on just how broken existing practice is. We know
that it has significant conceptual problems, but do not yet have
extensive data on the statistical impact of those problems.
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Understanding these problems will help us better interpret exist-
ing research findings and hopefully enable us to adapt experimental
designs to compensate for evaluation biases. It will complement
other important work such as counterfactual evaluation by building
a bridge between historical research practices and more sophisti-
cated understandings of recommendation problems and evaluation
techniques.

This work is ongoing, and we invite feedback to shape it as we
move forward.
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